عمليات الذكاء الاصطناعي/التعلم الآلي

التنسيق والجدولة والنشر: Kubernetes وSlurm وRay والمنصات التي تحافظ على إنتاجية مجموعات GPU.

17 articles

البنية التحتية المكلفة لوحدات معالجة الرسومات لا قيمة لها إذا بقيت خاملة. MLOps—ممارسة الحفاظ على أنظمة الذكاء الاصطناعي تعمل بكفاءة—أصبحت تخصصاً بنفس أهمية هندسة التعلم الآلي ذاتها.

يغطي هذا المحور الجانب التشغيلي للذكاء الاصطناعي: من جدولة مهام التدريب الموزع إلى تقديم النماذج على نطاق واسع، وأتمتة البنية التحتية التي تجعل ذلك قابلاً للإدارة.

المواضيع الأساسية

  • منصات التنسيق — Kubernetes مقابل Slurm مقابل Ray: اختيار المجدول المناسب لأحمال عمل الذكاء الاصطناعي
  • التدريب الموزع — التوازي في البيانات، التوازي في النماذج، والأطر (DeepSpeed، FSDP، Megatron) التي تمكنها
  • تقديم النماذج — تحسين الاستنتاج، استراتيجيات المعالجة المجمعة، وأنماط النشر للتعلم الآلي الإنتاجي
  • استخدام وحدة معالجة الرسومات — تقنيات المراقبة والتحليل والتحسين التي تعظم استخدام المسرعات المكلفة
  • البنية التحتية كرمز — Terraform وAnsible وأنماط الأتمتة للبيئات القابلة للتكرار للذكاء الاصطناعي

الفجوة بين "عرض الذكاء الاصطناعي التوضيحي" و"الذكاء الاصطناعي في الإنتاج" يتم سدها عبر العمليات. تغطيتنا لـ MLOps تساعدك في بناء الممارسات والمنصات التي تحول استثمارات وحدة معالجة الرسومات إلى قيمة تجارية.

All عمليات الذكاء الاصطناعي/التعلم الآلي Articles (17)

CoreWeave: ثورة البنية التحتية للذكاء الاصطناعي - كيف تحولت شركة ناشئة لتعدين العملات المشفرة إلى العمود الفقري للذكاء الاصطناعي بقيمة 23 مليار دولار

CoreWeave: ثورة البنية التحتية للذكاء الاصطناعي - كيف تحولت شركة ناشئة لتعدين العملات المشفرة إلى العمود الفقري للذكاء الاصطناعي بقيمة 23 مليار دولار

CoreWeave تحولت من تعدين العملات المشفرة لتصبح العمود الفقري للبنية التحتية للذكاء الاصطناعي بقيمة 23 مليار دولار، محققة نمواً في الإيرادات بنسبة 737% بينما تدعم النماذج الأساسية لـ OpenAI.

Request a Quote_

Tell us about your project and we'll respond within 72 hours.

> TRANSMISSION_COMPLETE

Request Received_

Thank you for your inquiry. Our team will review your request and respond within 72 hours.

QUEUED FOR PROCESSING